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Abstract

We consider the problem of finding microgrids in a network. We mainly focus on
the complexity aspects related to the different variants of this problem5.
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1 Introduction and motivations

The electric landscape in France is in deep mutation. The electric produc-
tion is changing, moving from a small number of production plants with high
electric power to a huge number of production units, each delivering a small
electric power. From a legal point of view, it is now possible since 2017 to
gather consumers and producers in a private local network called microgrid. In
such microgrids, the consumers use the electricity generated by the producers
belonging to this microgrid. The only electric exchange between a microgrid
and the outside is the one necessary to obtain the equilibrium between electric
consumption and production of the whole microgrid.
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The merging of consumers and producers geographically close into micro-
grids presents several advantages. The transportation of electricity is more
efficient in a microgrid as producers and consumers are close. There may
exist local rules regulating the production of electricity such as 100% of re-
newable energy. Moreover, the partition of the whole electric network into
microgrids tends to reduce the effects of electric problems such as blackouts.
Indeed, when a problem locally appears in a microgrid, this latter can be
disconnected from the network stopping the propagation of the problem.

A microgrid is interesting only if the exchange between this microgrid and
the outside is very small. Ideally, the local production should correspond to
the local consumption. Moreover, the electric network of the microgrid must
be sufficient to ensure the transportation of the electricity inside the microgrid.

We model the electrical network (smartgrid) with a graph G = (V,E)
whose vertices represent the producers/consumers/relays and whose edges are
the electrical connections. We associate with each vertex v ∈ V a weight
w ∈ Z which corresponds to its consumption (w < 0) or production (w > 0).
We think of microgrids as connected subgraphs, and call a microgrid self-
sufficient if its own production matches its consumption. More formally, a
subset of vertices X of V is called self-sufficient if the graph G[X] induced
by X is connected and its own consumption matches its production, that is,
w(X) = 0.

We consider in this work two problems relative with the question of finding
microgrids in a network. In the first one – hereafter called Self-Sufficient
Partition – an electricity supplier has its own electrical network and wants
to partition it into independent microgrids in order to limit the propagation
of local electric problems. This problem can be formally defined as follows.

Self-Sufficient Partition. Given a graph G = (V,E), w : V → Z and
k ∈ Z+, determine whether there exists a partition P = {P1, . . . , Pk} of V
such that Pi is self-sufficient for all i = 1, . . . , k.

In the second problem we consider – called Self-Sufficient Augmen-
tation – a set of local producers and consumers want to gather together to
create a microgrid. A definition in terms of graphs in given below.

Self-Sufficient Augmentation. Given a graph G = (V,E), w : V → Z
and X ⊆ V , determine whether there exists a self-sufficient subset Y of V
containing X.

In this work, we first state the complexity of Self-Sufficient Partition
depending on the class graph of G. More precisely, we show that the problem
is NP-complete whenever G is series-parallel but becomes polynomial-time



solvable if G is outerplanar.

We then study the complexity of Self-Sufficient Augmentation. We
show that it is NP-complete even if G is a star. We then consider its combi-
natorial version and prove that it is NP-complete in general but polynomial
for graphs of fixed treewidth.

2 Complexity of Self-Sufficient Partition

In this section, we prove that the problem of partitioning a series-parallel
graph into a fixed number of self-sufficient sets is NP-complete but becomes
polynomial-time solvable in outerplanar graphs. Outerplanar graphs being a
large subclass of series-parallel graphs, these two results, Theorems 2.1 and 2.2,
establish the complexity behaviour of Self-Sufficient Partition.

2.1 NP-completeness

In this section, we prove the NP-completeness of Self-Sufficient Parti-
tion using the well-known NP-complete problem Partition [2] defined as
follows.

Partition. Given a multiset of positive integers p1, . . . , pn, determine whether
there exists a partition of {1, . . . , n} into two subsets S1 and S2 such that∑

i∈S1
pi =

∑
i∈S2

pi.

A graph is series-parallel if it does not contain K4 as a minor. When no
removal of a single vertex disconnects a graph, the latter is said 2-connected.
Loops and bridges are called trivial 2-connected graphs. The non trivial 2-
connected components of a graph are the maximal 2-connected subgraphs of
the graph obtained after the removal of loops and bridges. Series-parallel
graphs admit the following constructive characterization: a graph is series-
parallel if all its non trivial 2-connected components can be built, starting
from the circuit of length two, by repeatedly applying the following operations:
add a parallel edge to an existing edge; or subdivide an existing edge, that is
replace the edge by a path of length two.

Theorem 2.1 Self-Sufficient Partition is NP-complete even if k = 2
and G is a 2-connected series-parallel graph.

Proof. We reduce Partition to Self-Sufficient Partition. Let p1, . . . , pn
be an instance of Partition and define q = 1

2

∑n
i=1 pi. Let G = (V,E)

be the graph with n + 2 vertices s, t, v1, . . . , vn and the 2n edges svi and
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Fig. 1. Reduction from Partition to Self-Sufficient Partition.

vit for i = 1, . . . , n (See Figure 1). Note that G is series-parallel. Let
w(s) = w(t) = −q and w(vi) = pi.

Let {P1, P2} be a solution to Self-Sufficient Partition. By con-
struction, if s and t belong to the same Pi, then G[V \ Pi] is not connected.
Hence, wlog, s ∈ P1 and t ∈ P2. Therefore, there exists I ⊆ {1, . . . , n} such
that P1 = {s} ∪ {vi : i ∈ I} and P2 = {t} ∪ {vi : i /∈ I}. As P1 and P2

are self-sufficient, w(P1) = w(P2) = 0. Since w(s) = w(t) = −q, we have
w({vi : i ∈ I}) =

∑
i∈I pi = q and w({vi : i /∈ I}) =

∑
i/∈I pi = q. Therefore,

{I, {1, . . . , n} \ I} is a solution to Partition.

Conversely, if {S1, S2} is a solution to Partition, then V1 = {s}∪{vi : i ∈
S1} and V2 = {t} ∪ {vj : j ∈ S2} are both self-sufficient and form a partition
of V , hence {V1, V2} is a solution to Self-Sufficient Partition. 2

2.2 Polynomial case

We prove that if the desired number of self-sufficient sets of the partition is
fixed, and if the graph is outerplanar, then Self-Sufficient Partition can
be solved in polynomial time. A graph is outerplanar if it can be drawn on
the plane so that all its vertices belong to the external face. Equivalently,
a graph is outerplanar if it contains neither K4 nor K2,3 as a minor. Recall
that series-parallel graphs are the graphs with no K4-minor. The following re-
sult and Theorem 2.1 establish the complexity boundary of Self-Sufficient
Partition.

Theorem 2.2 If G is 2-connected outerplanar and k is fixed, then Self-
Sufficient Partition is polynomial-time solvable.

Proof. Let G be outerplanar and 2-connected and k be fixed. The goal is to
find a partition of G into k self-sufficient sets of vertices. Let C be the cycle
which forms the external face of G. By the following claim, enumeration gives
an algorithm that runs in O(n2k).



Claim 2.3 If P is a self-sufficient partition of G, then there exists P ∈ P
such that the vertices of P form a subpath of C.

Proof. Suppose not, then there exist distinct P and Q in P such that C
traverses, in this order, a set of vertices XP of P , a set of vertices XQ of Q, a
set of vertices YP of P , and then a set of vertices YQ of Q. Since both G[P ] and
G[Q] are connected, we may assume that G[XP ∪YP ] and G[XQ∪YQ] contain
an edge eP and eQ of E \ C, respectively. But then eP and eQ are crossing, a
contradiction to the fact that G is outerplanar with external face C. 2

Now, note that there are
(
n
2

)
subpaths of C. Let P be the vertex set of

such a path and let G′ = G \ P . The addition of P to any partition of G′

into k − 1 self-sufficient sets yields a partition of G into k self-sufficient sets.
Since repeating this process decreases k by one, and since there are at most(
n
2

)
≤ n2 subpaths at each step, all the solutions are enumerated in less than

(n2)k operations. In particular, if k is fixed, then this is polynomial in n. 2

3 Complexity of Self-Sufficient Augmentation

3.1 Weighted version

We prove that Self-Sufficient Augmentation is NP-complete by reduc-
ing Subset Sum to it. Subset Sum is a well-known NP-complete problem,
see [2].

Subset Sum. Given a multiset of integers p1, . . . , pn and q ∈ Z, determine
whether there exists a subset I of {1, . . . , n} such that

∑
i∈I pi = q.

Theorem 3.1 Self-Sufficient Augmentation is NP-complete even if G
is a star.

Proof. We reduce Subset Sum to Self-Sufficient Augmentation. Let
p1, . . . , pn and q be an instance of Subset Sum. Wlog, we assume that pi is
nonzero for i = 1, . . . , n. Let G = (V,E) be the graph with n + 1 vertices
s, v1, . . . , vn and the n edges svi for i = 1, . . . , n (See Figure 2). Note that G
is a star. Define w by w(s) = −q and w(vi) = pi, and let X = {s}. First, note
that if

∑
i∈I pi = q for some subset I of {1, . . . , n}, then {s} ∪ {vi : i ∈ I} is

self-sufficient. Conversely, let us show that any self-sufficient subset Y of V
induces a solution to Subset Sum. By construction, since G[Y ] is connected,
then s ∈ Y . Hence, Y = {s} ∪ {vi : i ∈ I} for some I ⊆ {1, . . . , n}. By
definition, w(Y ) = 0 so w(Y \ {s}) =

∑
i∈I pi = −w(s) = q. Thus, I is a

solution to Subset Sum. 2
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Fig. 2. Reduction from Subset Sum to Self-Sufficient Augmentation.

3.2 Combinatorial version

Given the difficulty of Self-Sufficient Augmentation shown in Theo-
rem 3.1, we now consider the combinatorial variant of this problem. In this
version, the vertices of the graph are either producers or consumers, and their
production/consumption is not taken into account: the goal of a microgrid is
to have as many producers as consumers.

A bicolored graph is a pair (G, π) where G = (V,E) is an undirected graph
and π = {V1, V2} is a bipartition of V representing the color of each vertex.
The vertices of V1 are colored in red and those of V2 in blue. A subgraph
G′ = (V ′, E ′) of a bicolored graph (G, π) is self-sufficient if it is connected and
V ′ contains the same number of vertices of each class of π. This is the special
case of the weighted version of self-sufficiency when w takes only +1 and −1
values. Self-Sufficient Augmentation is defined in its combinatorial
version as follows.

Combinatorial Self-Sufficient Augmentation. Given a bicolored
graph (G, π), a subset W of vertices and k ∈ Z+, determine whether there
exists a self-sufficient subgraph G′ = (V ′, E ′) of G such that V ′ contains W
and |V ′| ≤ k.

3.2.1 Positive results

We prove that Combinatorial Self-Sufficient Augmentation reduces
to Graph Motif. The latter problem can be stated as follows.

Graph Motif. Given a colored graph G = (V,E) and a multiset of colors
M , determine whether there exists a subset X ⊆ V which induces a connected
graph and whose multiset of colors equals M .

Proposition 3.2 Combinatorial Self-Sufficient Augmentation redu-
ces to Graph Motif.

Proof. Consider an instance of Combinatorial Self-Sufficient Aug-
mentation given by a graph G = (V,E), a partition π = {V1, V2} of V ,
a vertex subset of W ⊆ V and a positive integer k. We suppose wlog that



|W ∩ V1| ≤ |W ∩ V2| and set d = |W ∩ V2| − |W ∩ V1|. Any self-sufficient

subgraph will contain at least |W |+ d vertices. Let ` = bk−|W |−d
2
c. A solution

to Combinatorial Self-Sufficient Augmentation – if it exists – is a
self-sufficient subgraph containing |W |+d+2j vertices for some j ∈ {0, . . . , `}.

We define an instance (G̃, M̃) of Graph Motif as follows. Consider `+ 1
copies of G to define G̃. Its vertices are colored in blue and red according to
the color of the vertices in G. Moreover, in each copy, all the vertices of W are
colored in a new color, say green. Let v0 be a vertex of W . For the jth copy
of G (j ∈ {0, . . . , `}), add the path Pj = v, u1, w1, . . . , u`−j, w`−j, v1 where all
the vertices but v are new vertices, v being v0 in this copy of G. the vertices
u1, . . . , uj are colored in red, w1, . . . , wj in blue and v1 in green.

Let M̃ be the multiset of colors defined as follows. It contains |W | + 1
times the green color, `+ d times the red color and ` times the blue color.

Now, letG′ = (V ′, E ′) be a solution to Combinatorial Self-Sufficient
Augmentation with |V ′| = |W |+d+2j, j ∈ {0, . . . , `}. A solution to Graph
Motif is obtained by taking all the vertices corresponding to those of V ′ in
the jth copy of G plus the vertices of Pj.

Let W be a solution to Graph Motif. By construction, all the vertices
of W belong to a same copy of G. Removing the vertices of the added path in
W except the one associated with v0 provides a solution to Combinatorial
Self-Sufficient Augmentation. 2

Proposition 3.2 implies that the polynomial cases for Graph Motif are
also polynomial cases for Combinatorial Self-Sufficient Augmenta-
tion. Since Graph Motif is polynomial when there is a polynomial number
of colors and G is of bounded treewidth [1], we obtain the following result.

Corollary 3.3 Combinatorial Self-Sufficient Augmentation is poly-
nomial-time solvable if G has a fixed treewidth.

More precisely, if w denotes the treewidth of G, one can solve Combina-
torial Self-Sufficient Augmentation in O(|V |4w+2).

3.2.2 Negative results

We show a NP-hardness result for Combinatorial Self-Sufficient Aug-
mentation. It is similar to the one existing for Graph Motif. The proof
is based on the one of [1]. The proof uses a reduction from Exact Cover
by 3-Sets which is NP-complete [2].

Exact Cover by 3-Sets. Given a set X = {x1, x2, . . . , x3q} and a collection
S = {s1, s2, . . . , sn} of 3-element subsets of X, determine whether there exists



a sub-collection C ⊆ S such that every element of X is included in exactly
one subset si ∈ C.

Proposition 3.4 Combinatorial Self-Sufficient Augmentation is NP-
hard even if G bipartite with maximum degree less than or equal to four.

Proof. We slightly modify the reduction given in Theorem 2 of [1] from Ex-
act Cover by 3-Sets to Graph Motif with two colors and G bipartite
with maximum degree four. In their proof, the authors construct, from an
instance X,S of Exact Cover by 3-Sets, a bipartite graph G containing
2n + q white vertices and n black ones. The motif M to find is composed of
2n+ 3q white vertices and q black ones.

We construct from G a bipartite G′ by replacing edge s′ns
′′
n by a path

s′n, v1, v2, . . . , v2n+2q, s
′′
n, where v1, . . . , v2n+2q are new black vertices. We set W

equal to the set of white vertices and k = |V |. There exists a motif M in G if
and only if there exists a self-sufficient subgraph of G′. 2

Note that the proof may be adapted for an arbitrary value of k by adding
dummy nodes.

4 Conclusion

We provide complexity results related to finding microgrids in an electric net-
work. However, real-world applications involve more realistic considerations.
For instance, the level of electric production/consumption cannot be con-
sidered as a single number; one needs to consider production/consumption
profiles depending on time or stochastic variability instead. Furthermore,
connectivity is not enough to ensure the transportation of electricity within
the microgrid. Tacking into account these more realistic requirements is the
direction of our future work.
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